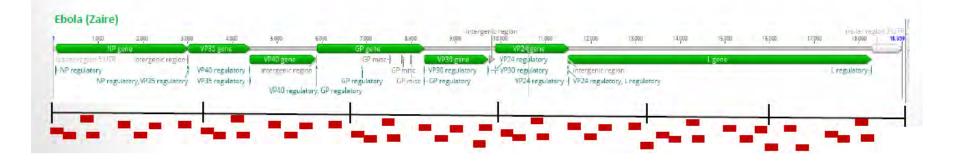


MediLabSecure Webinar Introduction to Metagenomics Technologies 14th December 2022 10.00-13:00 CET

A Pan-virus microarray for metagenomic analysis

Miguel Ángel Jiménez Clavero

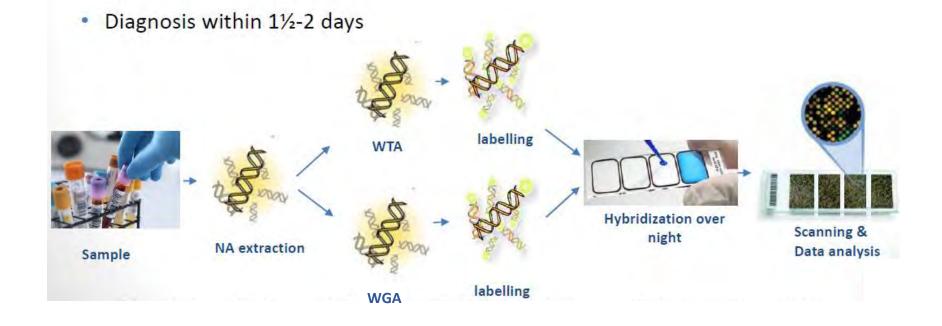
Head of the Animal Virology Coordination team of MediLabSecure Animal Health Research Center, INIA-CISA. Valdeolmos, Madrid SPAIN


- Metagenomic Pan-Virus microarray
 - Developed at the Statens Serum Institute (SSI) in Denmark (MWR & AF)
 - Tests all viruses with full genome sequences at GenBank in 2018 (n=3059)
- Why a Pan-Virus microarray?
 - As a diagnostics/surveillance tool
 - Replaces thousands of individual PCR reactions
 - Circumvents the need for a clear clinical hypothesis
 - Relatively fast (1.5-2 days from sample preparation to result)
 - Almost identical preparation for all kinds of samples and viruses (either DNA or RNA)
 - No need for advanced bioinformatics: the analysis of results is very simple

Introduction

• The SSI Pan-Virus Microarray: Design

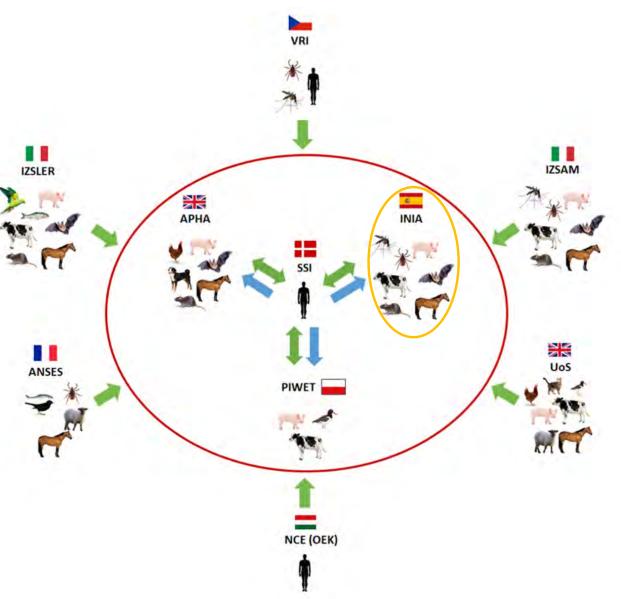
- DNA Probes = 65 nt long
- Unique and conserved virus regions
- 30-160 probes per virus genome (depending on the size of the viral genome)
- Ex. 1
 - EBOV genome = 19,000 nt
 - 60 x 65 nt/probe = 3,900 nt are covered by unique and specific probes (21%)
- Ex. 2
 - CMV genome = 236,000 nt
 - 160 x 65 nt/probe = 10,400 nt are covered by unique and specific probes (4%)



Introduction

• The SSI Pan-Virus Microarray: Overview

- Blood, swaps, biopsies, urine, feces, tracheal secret etc.
- Unbiased metagenomic detection
 - Whole Transcriptome Amplification (WTA) (RNA virus)
 - Whole Genome Amplification (WGA) (DNA virus)


Introduction

 MAD-Vir*: A One Health European Joint Programme (OHEJP) Project (EU-H2020)

- **AIM:** To use Microarray technology for unbiased Metagenomic virus surveillance and detection of emerging virus threats
- Implementation of the Pan-Virus microarray method at INIA (ES), APHA (UK) and PIWET (PL)
- Use Pan-Virus microarray analysis of suspicious animal, human and surveillance samples for "emerging threats and FBZ" (~1000 samples)
- Validate and compare results to already developed diagnostic methods (e.g. pathogen specific PCRs, Microfluidic PCRs, Nanostring, NGS etc)
- " "Metagenomic <u>Array Detection of emerging Vir</u>us in EU"

• At INIA, we pursued two specific objectives:

- I. To contribute to the **harmonisation and validation** of the Pan-Virus microarray developed at the Statens Serum Institute (SSI) in Denmark, using samples obtained from animals either experimentally infected with known viruses or from clinical cases occurring in the field.
- II. To explore the ability of the SSI Pan-Virus microarray to **identify and type novel or eccentric variants** within a virus species (level of discrimination).

Methods

• Samples analyzed (SSI and INIA)

Sample types	Animal species*	Viruses (family/species/variant)
Blood Brain Feathers Faeces Heart Kidney Lung Lymph node	Mammals: - Horse - Mice - Swine - Sheep Birds: - Barn Own - Cinereous vulture	 Flaviviridae: West Nile virus (lineages 1, 2, 5 & 6) Usutu virus (Spain/2009) Bagaza virus (Spain/2010) Classical swine fever virus (Gt-2.3) Asfarviridae: African swine fever virus (Gt –II) Picornaviridae:
, ,	 Golden eagle Partridges (Red-legged & Grey) 	 Porcine teschovirus (PTV-12) <i>Reoviridae</i>: Bluetongue virus (St-4) <i>Paramyxoviridae</i>: Peste des petits ruminants virus (Gt-IV)

*Experimentally infected (black) or clinical cases (grey)

Methods

• Samples analysed (SSI and INIA)

Experimental infections (n=16 samples)

Animal species	Inoculated virus	Samples	
Mice	WNV	Brain	
Pig	ASFV	Lung	
Pig	CSFV	Serum	
Pig	PTV	Faeces	
Sheep	PPRV	Mesenteric ganglion	
Sheep	BTV	Blood	
Red-legged partridge	WNV	Blood, feather	
Red-legged partridge	USUV	Blood	
Red-legged partridge	BAGV	Feather	
Grey partridge	USUV	Heart, kidney	

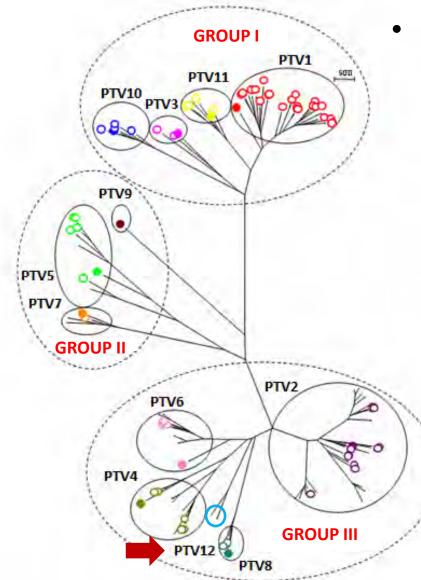
Animals with clinical signs (n=8 samples)

Animal species	Virus identified (PCR methods)	Samples
Horse	WNV	Brain
Golden eagle	WNV	Kidney
Cinereous vulture	WNV	Feather
Barn owl	Not detected	Brain, kidney, heart, spleen, lung

• Pan-Vir microarray identification of viruses present in each sample at the species level

Experimental infections (n=16 samples)

Animal species	Inoculated virus	Samples	
Mice	WNV	Brain	4
Pig	ASFV	Lung	4
Pig	CSFV	Serum	2
Pig	PTV	Faeces	
Sheep	PPRV	Mesenteric ganglion	4
Sheep	BTV	Blood	4
Red-legged partridge	WNV	Blood, feather]
Red-legged partridge	USUV	Blood	-
Red-legged partridge	BAGV	Feather	2
Grey partridge	USUV	Heart, kidney	4


Animals with clinical signs (n=8 samples)

Animal species	Virus identified (PCR methods)	Samples	
Horse	WNV	Brain	2
Golden eagle	WNV	Kidney	5
Cinereous vulture	WNV	Feather	2
Barn owl	Not detected	Brain, kidney, heart, spleen, lung	2

In a 3rd round of analysis (SSI) the array detected a bornavirus closely related to **canary bornavirus** in Barn owl brain.

Results (II)

Porcine teschovirus new serotype

PTV12

Nucleotide homology: Intragroup: 81-87% Intergroup: 75-79%

Faecal sample Experimentally inoculated pig Viral load: Ct 26

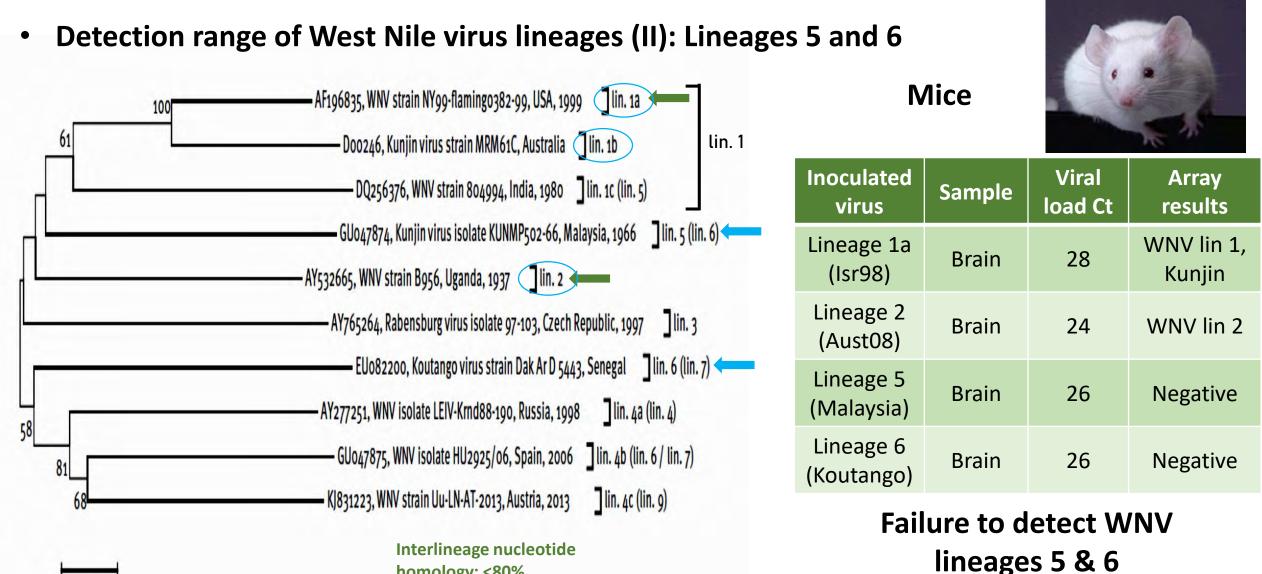
Pan-Vir array results (SSI):

Porcine teschovirus 4 Porcine teschovirus 8 Porcine teschovirus 2 Porcine teschovirus 1 Porcine enterovirus, Porcine bocavirus, (Porcine adenovirus type 3)

Correct detection and group assignation

Cano-Gómez et al., Journal of General Virology 2017;98:1636-1645

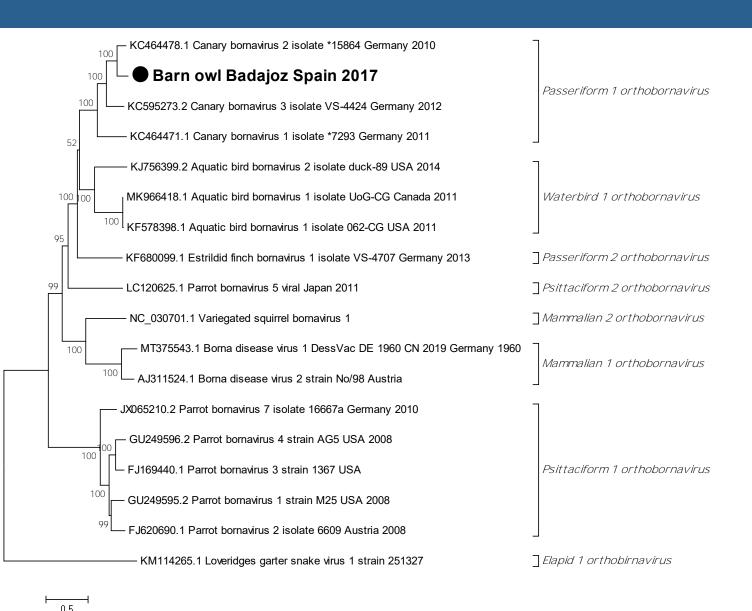
Results (III)


 Detection range of West Nile virus lineages (I): Lineage 	es 1 and 2		40		
AF196835, WNV strain NY99-flamingo382-99, USA, 1999 IIin. 1a 61 Doo246, Kunjin virus strain MRM61C, Australia IIin. 1b IIin. 1		Red-legged partridge			
DQ256376, WNV strain 804994, India, 1980] lin. 1c (lin. 5) GU047874, Kunjin virus isolate KUNMP502-66, Malaysia, 1966] lin. 5 (lin. 6)	Inoculated virus	Sample	Viral load (Ct)	Array results	
AY532665, WNV strain B956, Uganda, 1937	Lineage 1a (Isr98)	Blood	27	WNV lin 1b (Kunjin)	
AY765264, Rabensburg virus isolate 97-103, Czech Republic, 1997 lin. 3 EU082200, Koutango virus strain Dak Ar D 5443, Senegal lin. 6 (lin. 7)	Lineage 2 (Aust08)	Blood	25	WNV lin 2	
AY277251, WNV isolate LEIV-Krnd88-190, Russia, 1998] lin. 4a (lin. 4)	Lineage 2 (Aust08)	Feathers	25	WNV lin 2	
GU047875, WNV isolate HU2925/06, Spain, 2006 [lin. 4b (lin. 6 / lin. 7) 68 KJ831223, WNV strain Uu-LN-AT-2013, Austria, 2013 [lin. 4c (lin. 9) Interlineage nucleotide			criminati		

-

internneage nucleotide homology: <80%

Results (IV)


homology: <80%

Results (V)

- Barn owl found sick (neurological signs)
- Died after 7 days of veterinary care provided in a wildlife recovery center in Badajoz province, Spain
- After RT-PCR analysis, WNV and other suspects were discarded

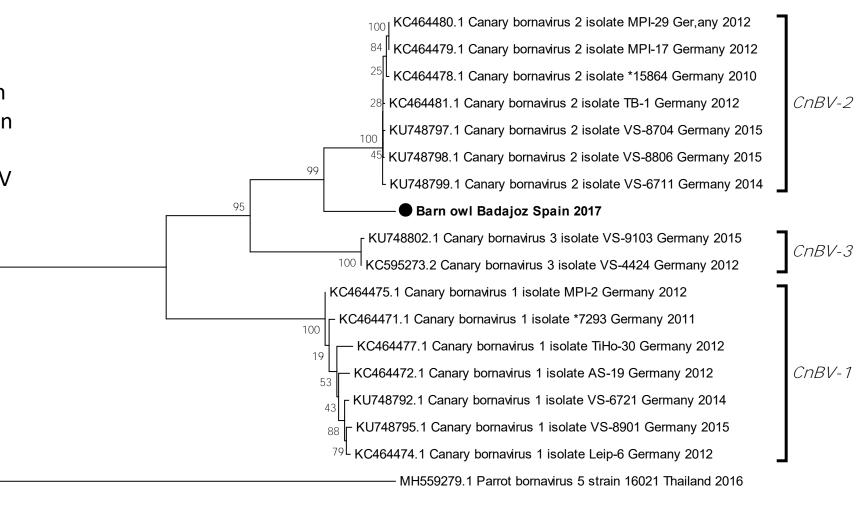

Barn owl (*Tyto alba*)

Fig. 1: Phylogenetic analysis of the genus *Orthobornavirus* (Family *Bornaviridae*) based on complete genome sequences. GenBank accession number, country and year were given for each strain. Sequence emphasized in bold and with a circle (•) was generated during this study.

Results (V)

- Barn owl found sick (neurological signs)
- Died after 7 days of veterinary care provided in a wildlife recovery center in Badajoz province, Spain
- After RT-PCR analysis, WNV and other suspects were discarded

Barn owl (Tyto alba)

0.10

Fig. 2: Phylogenetic analysis based on a 2250 nt fragment (corresponding to N, X, P and M proteins coding regions) of *Passeriform 1 orthobornavirus* family. Each Canary Bornavirus genotype (CnBV-1, CnBV-2, CnBV-3) was indicated. GenBank accession number, country and year were given for each strain. Sequence emphasized in bold and with a circle (•) was generated during this study.

Conclusions

The Pan-virus microarray developed by SSI:

- Was able to successfully identify all viruses expected from a collection of samples of a wide range of types and animal origins, including both experimental infections and field cases.
- Exhibits enough sensitivity for application in diagnosis of clinical samples.
- Was able to detect successfully a wide range of viruses, either DNA or RNA.
- Appears to detect viruses bearing up to % 80% homology with those included in the design. As the % homology decreases, the detection is less likely.
- Demonstrated its utility as last resort technique for molecular diagnostics when other techniques fail.
- Was successfully applied to the identification of a new avian pathogen related to canary bornavirus.

The inclusion of a wider range of sequences already available in the next microarray version (in progress) will likely improve its virus detection range.

INIA-CISA (CSIC) Valdeolmos, Spain

Francisco Llorente Jovita Fernandez-Pinero Paloma Fernández-Pacheco Cristina Cano-Gómez Carmina Gallardo Frontaura Elisa Pérez-Ramírez

SSI Copenhagen, Denmark

Anders Fomsgaard Maiken Worsøe Rosenstierne

