

National Institute of Health (NIH) Dr. Ricardo Jorge, Lisbon, Portugal

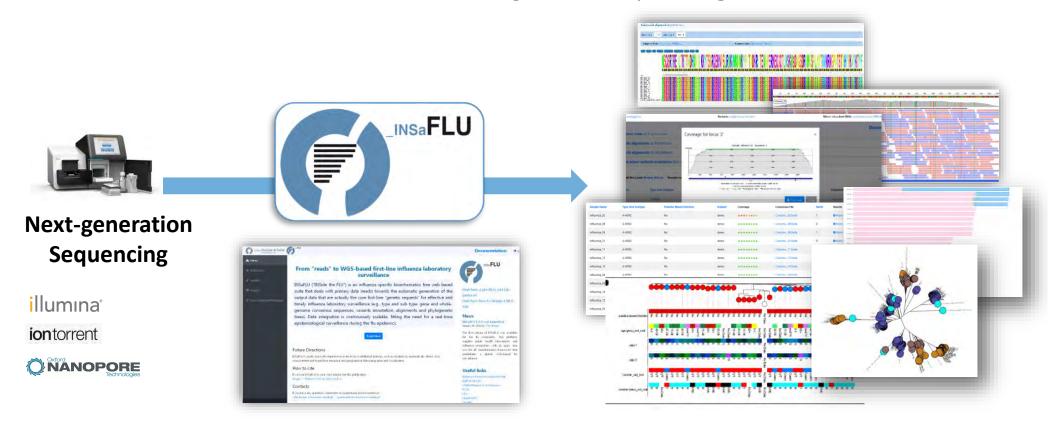
https://insaflu.insa.pt

INSaFLU-TELEVIR: an open web-based bioinformatics suite for metagenomic virus detection and routine genomic surveillance

Joana Isidro

National Institute of Health Dr. Ricardo Jorge, Portugal Department of Infectious Diseases
Bioinformatics Unit

joana.isidro@insa.min-saude.pt



New era of virus surveillance Targeting the whole-genome

Many laboratories do not have bioinformatics capabilities and/or staff needed to analyze raw NGS data, which is an obstacle in the transition to whole-genome sequencing

https://insaflu.insa.pt

Online platform (free, confidential accounts) but it can be installed locally

User-oriented / no advanced expertise in bioinformatics is needed

Applicable to NGS data (single / paired-end data; Illumina / Ion Torrent / ONT) collected from diverse amplicon-based schemas

Which are the main features of INSaFLU?

Tailored to seasonal human influenza and SARS-CoV-2 but is applicable to other pathogens

Dynamically integrates data in a cumulative manner, fitting the continuous epidemiological surveillance during epidemics

Outputs are standardized and compatible with other platforms for downstream data visualization/analysis

INSaFLU-TELEVIR: an open web-based bioinformatics suite for metagenomic virus detection and routine genomic surveillance (influenza, SARS-CoV-2 and other pathogens)

https://insaflu.insa.pt

INPUTS

✓ Sample metadata table

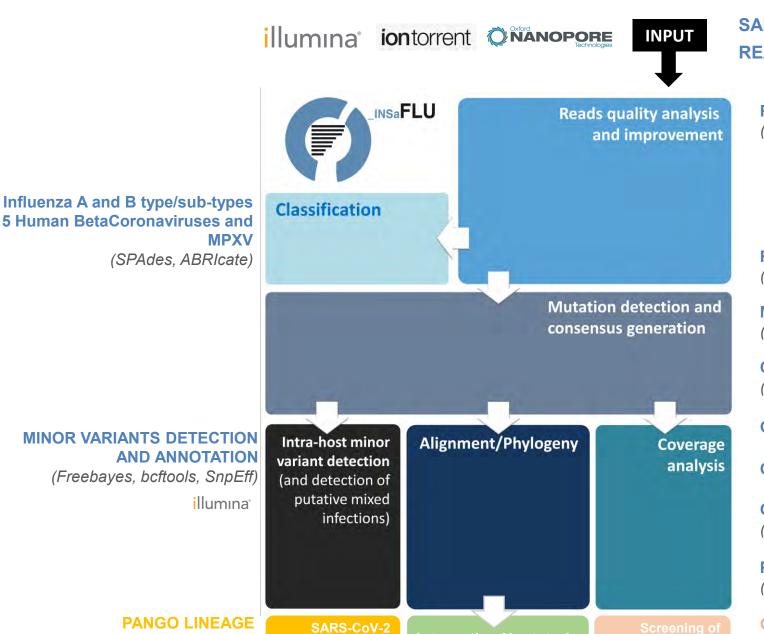
✓ NGS data *

*Compatible with distinct sequencing technologies: Illumina, Ion Torrent and Oxford Nanopore

INSaFLU

OUTPUTS

ROUTINE GENOMIC SURVEILLANCE


- Read quality analysis and improvement
- Human betacoronaviruses, MPXV and influenza type/subtype classification (directly from reads)
- Interactive coverage analysis
- Mutation annotation and consensus sequence generation/curation
- Gene- and genome-based alignments and phylogenies
- Intra-host minor variant detection (including flagging of putative mixed infections)
- SARS-CoV-2 "Pango lineage" classification
- Direct link to "Nextclade" navigation
- Genotype-phenotype screening

INSaFLU-TELEVIR development is being co-funded by the European Commission on behalf of OneHealth EJP

TELEVIR project: https://onehealthejp.eu/jrp-tele-vir/

SAMPLE TABLE – sample ID, reads ID + METADATA READS - DRAG & DROP (fastq.gz format)

READ QC

(Trimmomatic / NanoFilt)

- GRAPHICAL QUALITY REPORTS (pre- and post-QC) (FastQC, NanoStat, RabbitQC)
- QUALITY-PROCESSED READS

REFERENCE-based MAPPING

(BWA / Medaka)

MUTATION DETECTION AND ANNOTATION

(Freebayes / Medaka, bcftools / SnpEff)

CONSENSUS GENERATION / CURATION

(automatic masking of low coverage regions; MSA masker)

GRAPHICAL MAPPING PROFILE (IGV)

COLOR-CODES FOR COVERAGE

GENOME AND GENE/PROTEIN ALIGNMENTS

(MAFFT, MSAViewer)

PHYLOGENETIC TREES LINKED TO METADATA VISUALIZATION

(FastTree, PhyloCanvas)

GENOTYPE-PHENOTYPE SCREENING

NEXTSTRAIN PHYLOGENETIC AND GEOTEMPORAL ANALYSIS.

(Seasonal Influenza, SARS-CoV-2, Monkeypox, and a "generic" build other viruses)

MINOR VARIANTS DETECTION

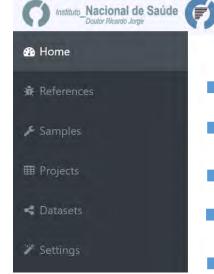
(Freebayes, bcftools, SnpEff)

illumına'

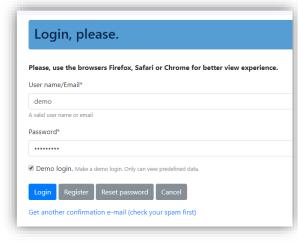
Pango lineage

direct link to

Nextclade


classification and

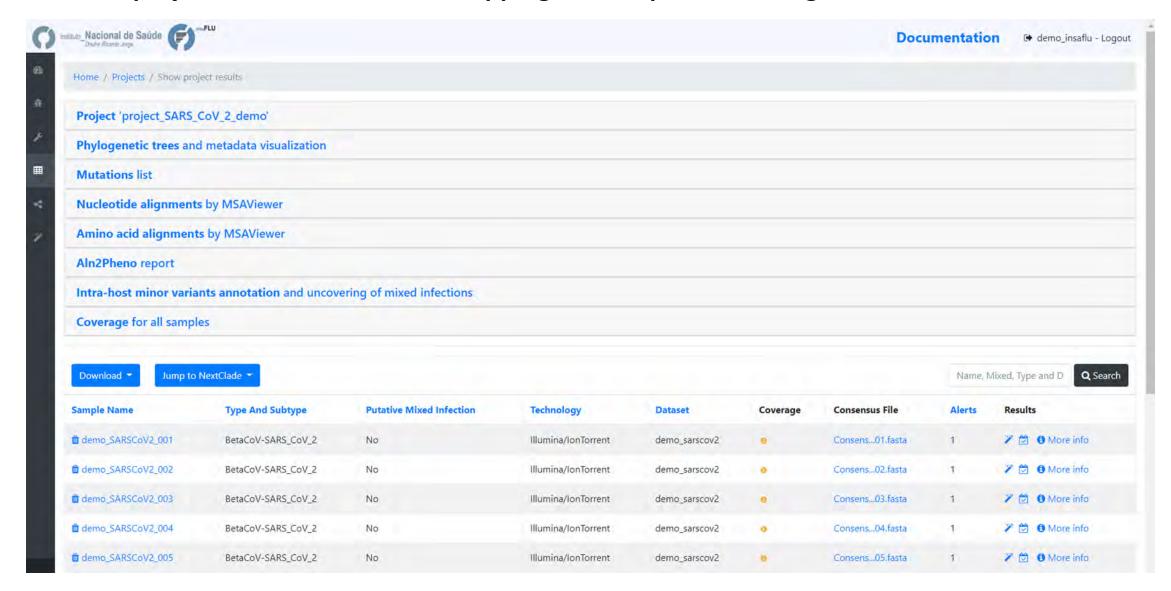
PANGO LINEAGE CLASSIFICATION AND NEXTCLADE LINKAGES

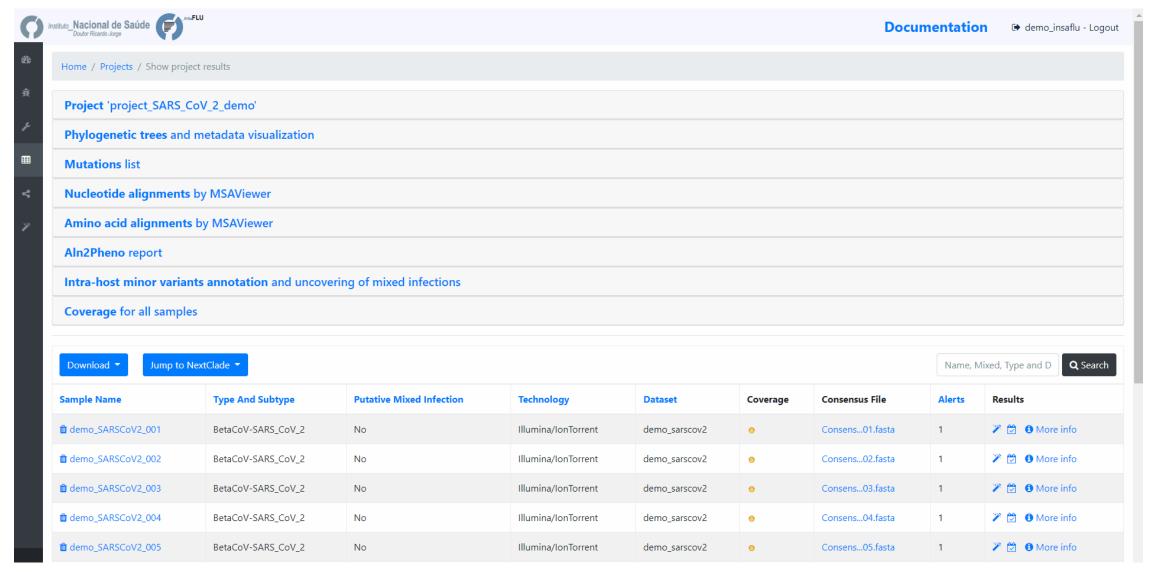

Integrative Nextstrain phylogenetic and geotemporal analysis.

→ Register and Login to a user restricted account

- References: default reference database; add new references
- Samples: main repository, add/delete samples, inspect / refine QC
- **Projects:** reference-based mapping and output data navigation
- Datasets (new): Nextstrain phylogenetic and genomic analysis, geotemporal data visualization and exploration of sequence metadata
- **Settings:** user-defined configuration of parameters for reads quality analysis, mapping, mutation validation and consensus generation/masking

Applicable to:





INSaFLU projects - reference-based mapping and output data navigation

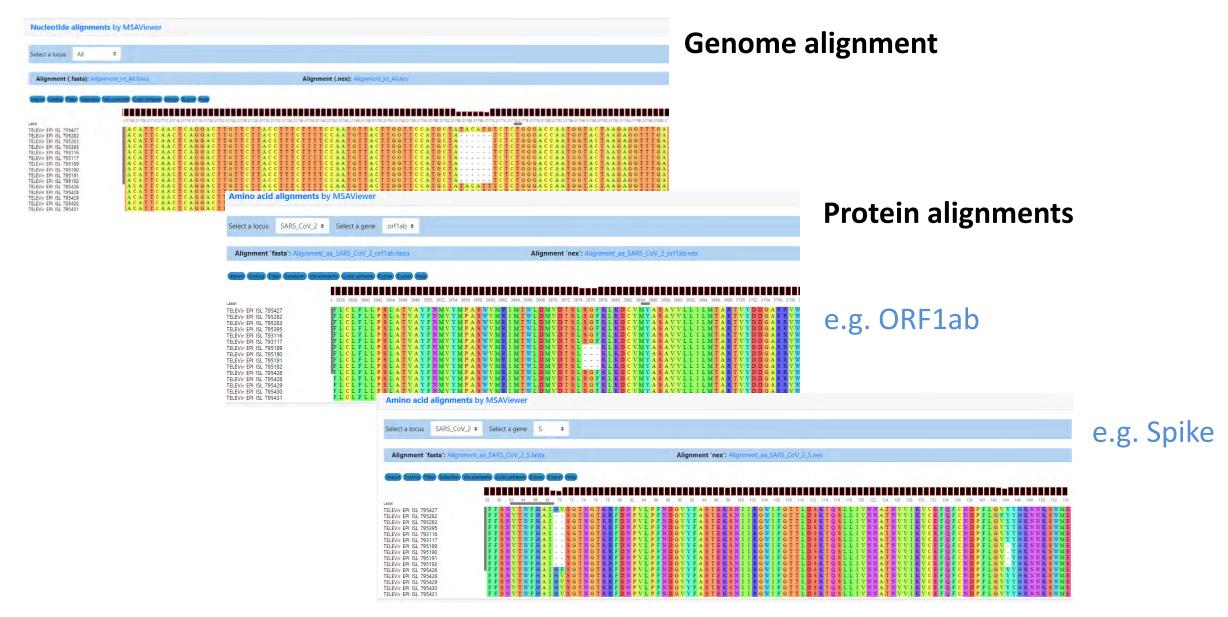
Multiple outputs in nomenclature-stable and standardized formats that can be downloaded or visually explored in situ.

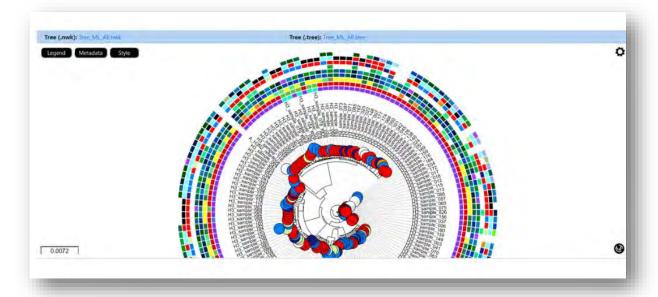
Examples of INSaFLU projects outputs

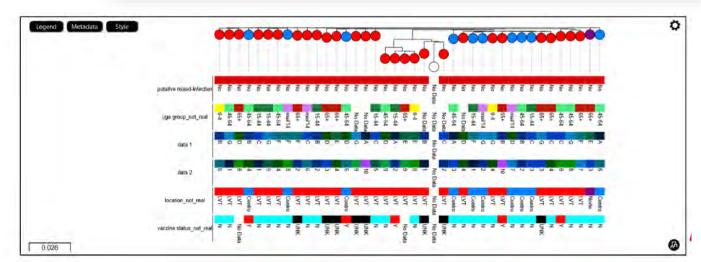
Expand-and-collapse panels

Multiple outputs in nomenclature-stable and standardized formats that can be downloaded or visually explored in situ.

Mutations in consensus





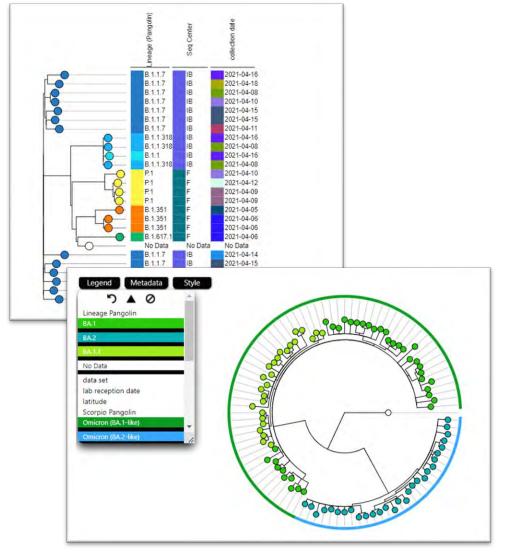


https://insaflu.insa.pt

SAMPLE ID		POS -	TYPE ~	REF -	ALT -	EVIDENCE			STRAN -	NT_PC ~ AA_PC ~ E	EFFECT	-	NT CHANGE	AA CHANGE	- LOCUS -	GENE	PRODUCT	
SARS_CoV_2_demo_01	MN908947	241	snp	С	T	T:5237 C:5		UTR +	+									
SARS_CoV_2_demo_01	MN908947	3037	snp	С	T	T:5634 C:3		DS +	+	2772/132 924/4400 s				Phe924Phe		orf1ab	orf1ab poly	
SARS_CoV_2_demo_01	MN908947	14408	snp	С	T	T:2898 C:1		DS +		941/8088 314/2695 r			941C>T	Pro314Leu		orf1ab	orf1ab poly	protein
SARS_CoV_2_demo_01	MN908947	23403	snp	A	G	G:10357 A:	<u></u>	DS +		1841/382 614/1273 r	missens	e_variant	1841A>G	Asp614Gly		S	surface gly	coprotein
SARS_CoV_2_dei			np	GGG	AAC	AAC:3205 GG		DS +		608/1260 203/419 r	missens	e_variant	608_610delGGGinsAAC	ArgGly203LysA	ırg	N	nucleocaps	id phosphoproteir
	nor var	Tants	np	С	T	T:3461 C:3		UTR +										
SARS_CoV_2_dei			_np	C		T:4320 C:4		DS +		2772/132 924/4400 s	_		2772C>T	Phe924Phe		orf1ab		
SARS_CoV_2_der ID	₹	CHRON T			REF			FTYPE		rani → nt_po: → aa_		EFFECT		▼ NT CHANGE ▼	AA CHANGE	~ L	OCUS_ ▼ GEN	
SARS_CoV_2_dei SARS_C				·	С	Т	1,2	CDS	+	4278/212 142		.		4278C>T	Thr1426Thr		orf1	
SARS_CoV_2_dei SARS_C		MN9089	4 10223	snp	С	Т	2,2	CDS	+	9998/212 333	3/709 r	missense_var	riant	9998C>T	Ala3333Val		orf1	ab orf1ab po
SARS_CoV_2_dei SARS_C		MN9089	4 25284	snp	С	A	6,6	CDS	+	3762/382 125	4/127 s	stop_gained		3762C>A	Cys1254*		S	surface gl
SARS_CoV_2_dei SARS_C		MN9089	4 28999	snp	Α	Т	1,4	CDS	+	766/1260 256	/419 s	stop_gained		766A>T	Lys256*		N	nucleocar
SARS_CoV_2_dei SARS_C		MN9089	4 2863	snp	Α	G	1,1	CDS	+	2638/212 880	/7095 r	missense_var	riant	2638A>G	Ile880Val		orf1	ab orf1ab po
SARS_CoV_2_dei SARS_C	oV_2_demo_02	MN9089	4 8168	snp	С	Т	1,0	CDS	+	7943/212 264	8/709 r	missense_var	riant	7943C>T	Thr2648Ile		orf1	ab orf1ab po
SARS_CoV_2_dei SARS_C	oV_2_demo_02	MN9089	4 24328	snp	G	T	2,4	CDS	+	2806/382 936	/1273 r	missense_var	riant	2806G>T	Asp936Tyr		S	surface gl
SARS_CoV_2_del SARS_C	oV 2 demo 02	MN9089	4 25284	snp	С	A	3,2	CDS	+	3762/382 125	4/127 s	stop_gained		3762C>A	Cys1254*		S	surface gl
SARS_COV_2_dell_caps_c	-V 2 dama 02	MANIOOGO	4 28999	snp	Α	Т	1,3	CDS	+	766/1260 256	/419 s	stop_gained		766A>T	Lys256*		N	nucleocar
			4 3907	snp	G	Т	1,9	CDS	+	3682/212 122	8/709 r	missense var	riant	3682G>T	Asp1228Tyr		orf1	ab orf1ab po
SARS C	oV 2 demo 03	MN9089	4 3926	snp	С	Т	12,7	CDS	+	3701/212 123	4/709 r	missense var	riant	3701C>T	Ala1234Val		orf1	ab orf1ab po
	oV_2_demo_03	MN9089	4 25284	snp	С	A	2,0	CDS	+	3762/382 125	4/127 s	stop gained		3762C>A	Cvs1254*		S	surface gl
SARS_CoV_2_der SARS_C	oV 2 demo 03	MN9089	4 25310	snp	С	Т	35,3	CDS	+	3788/382 126	3/127 r	missense var	riant	3788C>T	Pro1263Leu		S	surface gl
SARS_CoV_2_dei SARS_C	oV 2 demo 04	MN9089			A	G	1,0	CDS	+	1632/212 544				1632A>G	Val544Val		orf1	
SARS_CoV_2_dei SARS_C	oV 2 demo 04	MN9089		·	A	G	2,4	CDS	+	2799/382 933				2799A>G	Lys933Lys		S	surface gl
SARS_CoV_2_dei SARS_C	oV 2 demo 04	MN9089			C	A	3,3	CDS	+	3762/382 125	······			3762C>A	Cys1254*		S	surface gl
SARS COV 2 del SARS_C		MN9089		·	c	T	37,2	CDS	+	124/828 42/2		missense var	iant	124C>T	Pro42Ser		ORF	-
SARS CoV 2 del SARS_C		MN9089		········	A	T	1,3	CDS	+	766/1260 256			iairt	766A>T	Lvs256*		N	nucleoca
		MN9089		snp	T	C		CD3		700/1200 230/	7413 3	stop_gameu		700A-1	Lyszso		IV.	Hucieoca
SARS_CoV_2_dei SARS_C						T	1,6	CDC		564/2120 100	/700F -			EC4C>T	A100A		orf1	
	oV_2_demo_05	MN9089		snp	С		2,8	CDS	+	564/2129 188				564C>T	Asn188Asn			······································
-	oV_2_demo_05				G	Α -	6,8	CDS	+	6346/212 211				6346G>A	Val2116Ile		orf1	
-	oV_2_demo_05	MN9089		·······	C	Т	3,4	CDS	+	3484/382 116			riant	3484C>T	Pro1162Ser		S	surface gl
-	oV_2_demo_05	MN9089		········	С	Α	3,8	CDS	+	3762/382 125				3762C>A	Cys1254*		S	surface gl
-				·······	A	Т	1,7	CDS	+	766/1260 256				766A>T	Lys256*		N	nucleocar
SARS C	oV 2 demo 06	MN9089	4 2073	snp	С	T	1.9	CDS	+	1848/212 616	/7095 s	svnonvmous	variant	1848C>T	Ile616Ile		orf1	ab orf1ab po

Phylogenetic trees and metadata visualization

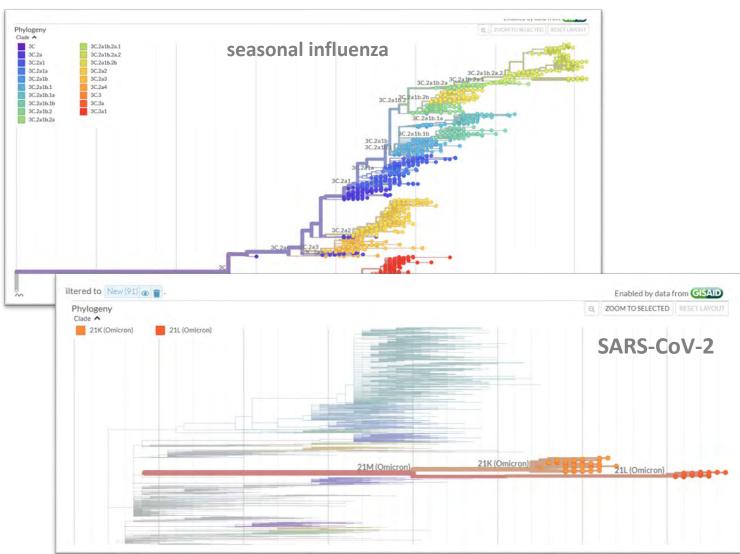
align2pheno tool (pilot module for SARS-CoV-2) screens and reports mutations of interest in Spike.


Sequence	lineage	Flagged mutations	All mutations	Nflagged	Nmutation	
	Clear	Clear				
demo_sarscov2_001	B.1.525	S:H69del;S:V70del;S:Y144del;S:E484K	S:Q52R;S:A67V;S:H69del;S:V70del;S:Y144del;S:E484K;S:A570V;S:D614G;S:Q677H;S:F888L	4	10	
demo_sarscov2_002	AY,102	S:T95I;S:R158G;S:L452R	S:T19R;S:T95l;S:E156dei;S:F157dei;S:R158G;S:L452R;S:T478K;S:D614G;S:P681R;S:D950N	3	10	
demo_sarscov2_003	AY.1	S:T95I;S:R158G;S:K417N;S:L452R	S:T19R;S:T95!;S:E156del;S:F157del;S:R158G;S:W258L;S:K417N;S:L452R;S:T478K;S:D614G;S:P681R;S: D950N	4	12	
demo_sarscov2_004	P.1	S:L18F;S:K417T;S:E484K;S:N501Y;S:H655Y	SiL18F;S:T20N;S:P265;S:D138Y;S:R190S;S:K417T;S:E484K;S:N501Y;S:D614G;S:H655Y;S:T1027I;S:V11 76F	5	12	
demo_sarscov2_005	B.1.351.3	S:L18F;S:K417N;S:E484K;S:N501Y	S:L18F;S:A67V:S:D80A;S:D215G;S:L241del;S:L242del;S:A243del;S:K417N;S:E484K;S:N501Y;S:D614G; S:A701V	4	12	
demo_sarscov2_012	B.1.1.7	S:H69del;S:V70del;S:Y144del;S:N501Y	S:H69del;S:V70del;S:Y144del;S:N501Y;S:A570D;S:D614G;S:P681H;S:T716l;S:S982A;S:D1118H	4	10	
demo_sarscov2_013	B.1.525	S:H69del;S:V70del;S:Y144del;S:E484K	S:Q52R;S:A67V;S:H69del;S:V70del;S:V144del;S:E484K;S:D614G;S:Q677H;S:F888L	4	9	
demo_sarscov2_014	B,1.1.7	S:H69del;S:V70del;S:Y144del;S:N501Y	S:P25L;S:H69de);S:V70de);S:Y144de);S:N501Y;S:A570D;S:D614G;S:P681H;S:T716];S:S982A;S:D1118 H	4	11	
demo_sarscov2_016	AY.124	S:T95I;S:R158G;S:L452R	S:T19R;S:T95I;S:E156del;S:F157del;S:R158G;S:L452R;S:T478K;S:D614G;S:P681R;S:D950N	3	10	
demo_sarscov2_017	8.1.525	S:H69del:S:V70del:S:Y144del;S:E484K	S:Q52R:S:A67V:S:H69dei:S:V70dei:S:Y144dei:S:E484K:S:A570V:S:D614G:S:Q677H:S:F888L	4	10	

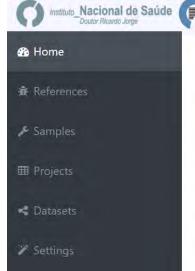
Screening of SARS-CoV-2 Spike amino acid alignments against two "genotype-phenotype" databases: the COG-UK Antigenic mutations (https://sars2.cvr.gla.ac.uk/cog-uk/) and the Pokay Database (https://github.com/nodrogluap/pokay/tree/master/data).

Automate (and up-to-date)

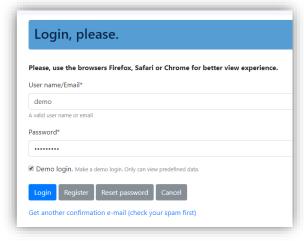
Pango lineage classification


Direct link to

Nextclade navigation



https://clades.nextstrain.org/

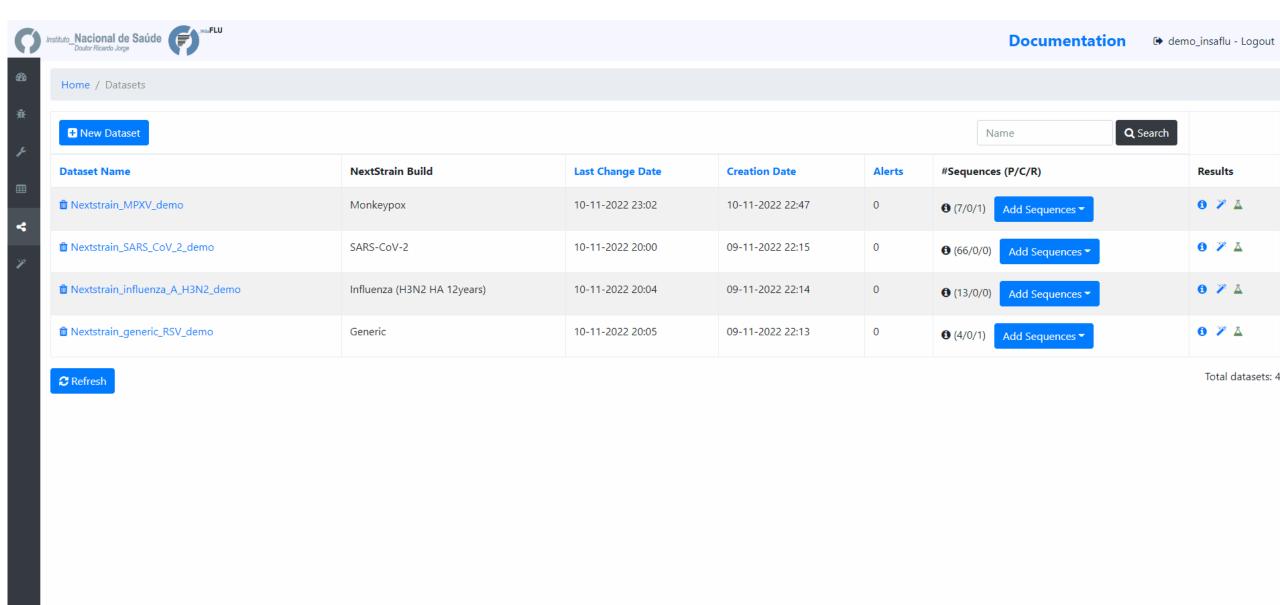


DATASETS – New module

Documentation

→ Register and Login to a user restricted account

- References: default reference database; add new references
- Samples: main repository, add/delete samples, inspect / refine QC
- **Projects:** reference-based mapping and output data navigation
- Datasets (new): Nextstrain phylogenetic and genomic analysis, geotemporal data visualization and exploration of sequence metadata
- **Settings:** user-defined configuration of parameters for reads quality analysis, mapping, mutation validation and consensus generation/masking

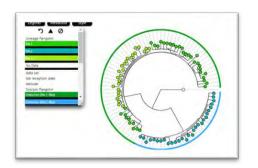

Applicable to:

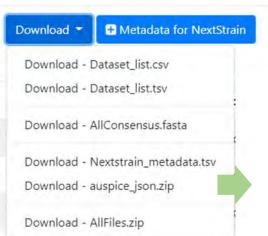
iontorrent

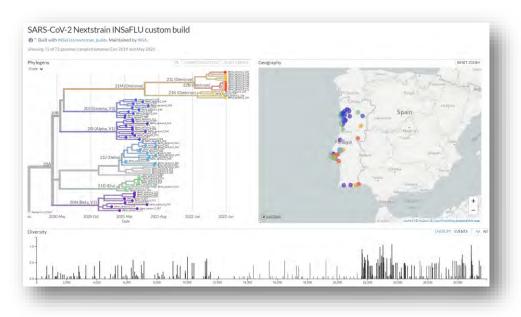
Available builds: Seasonal Influenza, SARS-CoV-2, Monkeypox and Generic

Examples of "Datasets" outputs

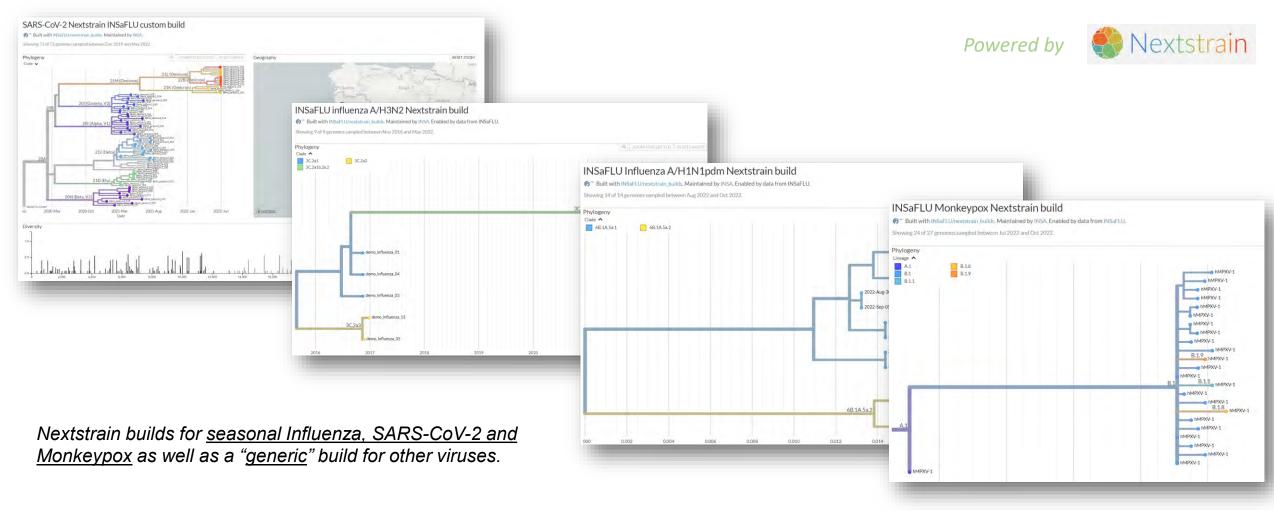
Nextstrain (https://nextstrain.org/) phylogenetic and geotemporal analysis.


Powered by




Interactive exploration of Nextstrain alignments and phylogenetic trees using PhyloCanvas

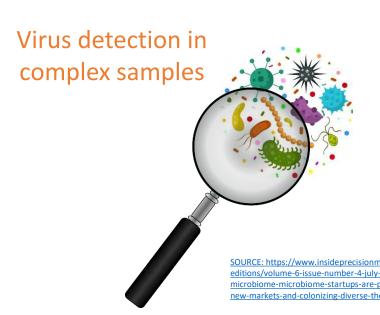
Integrative and interactive Nextstrain phylogenetic and geotemporal analysis.


DRAG&DROP onto https://auspice.us/

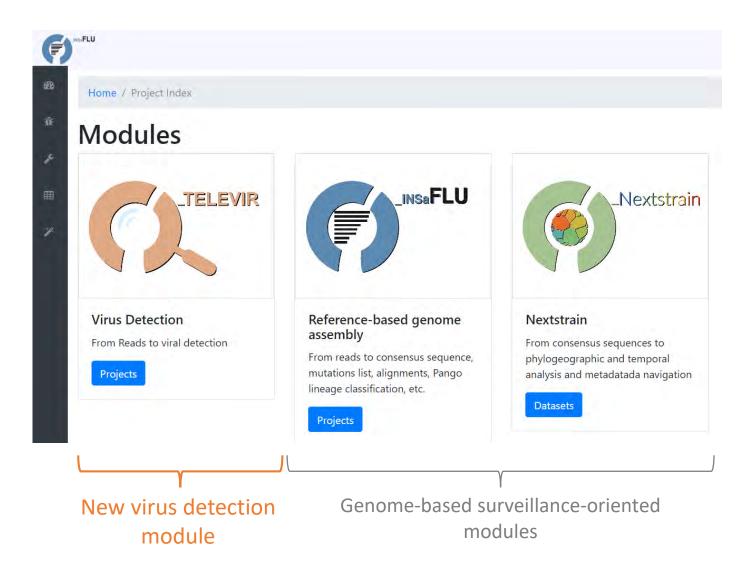
Examples of "Datasets" outputs

Nextstrain (https://nextstrain.org/) phylogenetic and geotemporal analysis.

INSaFLU-TELEVIR has been continuously updated


- Firstly tailored for influenza surveillance
- **SARS-CoV-2** adapted at beginning of pandemic
- 2022 Monkeypox virus outbreak

New challenges - viral metagenomics


- Virus detection in complex biological samples
- Crucial for early virus detection (especially, novel threats)
- Bioinformatics analysis is a major obstacle/need in the field

Virus-specific routine genomic surveillance

- Implementation of a new module for virus detection from reads

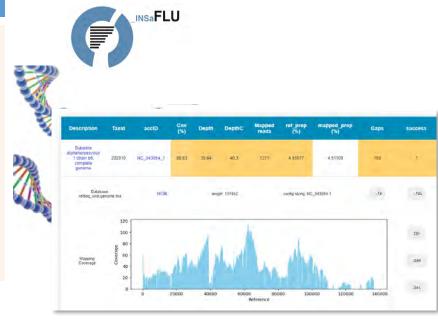
INSaFLU-TELEVIR: an open web-based bioinformatics suite for <u>metagenomic</u> <u>virus detection</u> and routine genomic surveillance (influenza, SARS-CoV-2 and other pathogens)

https://insaflu.insa.pt

New virus detection module

SOON!

INPUTS


✓ Sample metadata table

✓ NGS data *

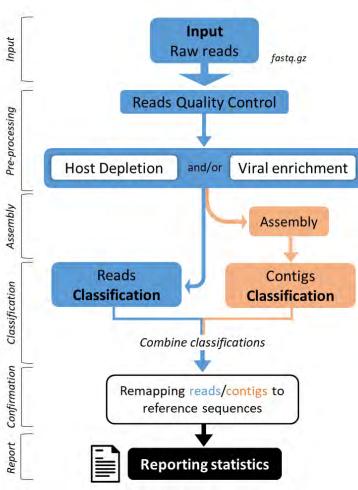
*Compatible with distinct sequencing technologies: Illumina, Ion Torrent and Oxford Nanopore

OUTPUTS

VIRUS DETECTION (TELEVIR module)

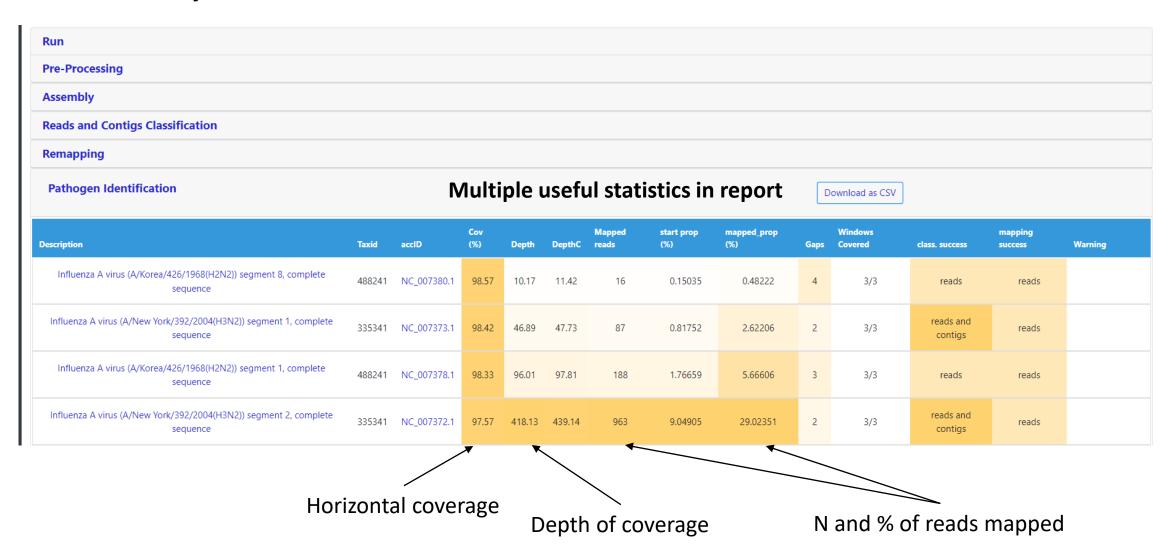
- ✓ Read quality analysis and improvement
- ✓ State of the art software
- ✓ Modular Pipeline
- ✓ Multiple Classification methods
- ✓ Multiple Viral databases
- ✓ Summary statistics and intuitive and interactive end-user reports

INSaFLU-TELEVIR development is being co-funded by the European Commission on behalf of OneHealth EJP



Virus detection from reads

Remove reads from host

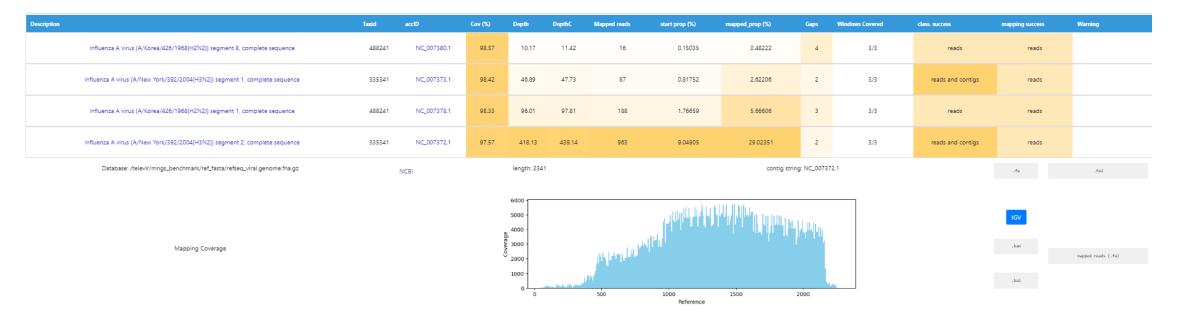

Keep the viral reads in the sample

Assembly; taxonomic classification of reads and contigs

Reads/contigs are remapped against reference genomes of the identified taxa

Summary statistics of the identified hits and intuitive end-user reports

Virus detection from reads


Virus detection from reads

Each hit is an "expand-and-colapse" panel that can be further vizualized and explored

- Vizualization of coverage throughout reference genome
- Mapped reads and contigs can be downloaded for further confirmations

Virus detection from reads

For further information from viral genome (if there is sufficient coverage), the user can **analyze the sample with the "surveillance-oriented" modules in INSaFLU-TELEVIR** (reference-based mapping, phylogenetic trees, ...)

Acknowledgements - INSaFLU-TELEVIR platform development

Bioinformatics Unit

Vítor Borges

Daniel Sobral

João Santos

Miguel Pinto

Rita Ferreira

Luis Coelho

Verónica Mixão

Ricardo Pais – former Pos-Doc

Alexandra Nunes

João Paulo Gomes

External partners

Miguel Pinheiro (iBiMED / Universidade de Aveiro)

(co-developer)

OneHealth EJP TELE-Vir project partners

Infraestrutura Nacional de Computação Distribuída (INCD), for providing computational resources for testing

National Reference Laboratory (NRL) for Influenza

Raquel Guiomar and collaborators

INSaFLU development is being co-funded by the European Commission on behalf of OneHealth EJP

TELE-Vir project: https://onehealthejp.eu/jrp-tele-vir/

